Qualification of a Highly Efficient Flat High Gain Antenna for the Potential Europa Lander © 2019 California Institute of Technology. Government sponsorship acknowledged. Nacer Chahat, John Luke Wolff, Heather Lim, and Polly Estabrook NASA Jet Propulsion Laboratory / California Institute of Technology December 19, 2019 2nd Indian Conference on Antennas & Propagation (InCAP2019) December 19-22, 2019 | Ahmedabad, India Pre-Decisional Information – For Planning and Discussion Purposes Only EUROPA HAS EMERGED AS ONE OF THE MOST LIKELY LOCATIONS IN THE SOLAR SYSTEM FOR POTENTIAL HABITABILITY THIS INNOVATIVE ANTENNA DESIGN IS A SOLUTION FOR RETURNING SCIENCE FROM HOSTILE ENVIRONMENTS AND VAST DISTANCES # **Cruise/Jovian Tour** - Jupiter Orbit Insertion: June 203 - Europa Landing: 2033 ## **Carrier Stage** - 1.5 Mrad TID radiation exposure - No longer an independent spacecraft - Elliptical disposal orbit ## **Deorbit, Descent, Landing** - Hazard detection and avoidance - Sky Crane landing system - 100-m accuracy - Adaptive stabilizers - **DTE tones only** - Biosignature Science - 20+ days - 3 samples from 1 trench - Direct to Earth Comm or Clipper (contingency) - 1.5 Gbit data return - 50 kWh battery - 2.0 Mrad TID radiation exposure Nov Baseline mission 2000cept ENABLE DIRECT TO EARTH LINK COMMUNICATION BETWEEN THE LANDER AND THE DSN #### **CHALLENGES** - Drastic stowage volume constraints requiring the antenna to be low profile - Survivability in the harsh environment (high radiation levels, iESD, cryogenic temperature) requiring the antenna to be mostly made of metal - High aperture efficiency* requirement (>80%) with RHCP at uplink and downlink frequency range ^{*} Aperture efficiency is defined here as the ratio of the realized gain of the antenna to its standard directivity. The standard directivity is $4\pi A/\lambda_0^2$, where A the area of the antenna aperture and λ_0 is the free space wavelength. This defines how efficiently the area of an antenna is used. Solder pin to stripline (bottom side) Pre tinned ribbon is used for stress relief 1-to-64 Power divider ANTENNA REFLECTION COEFFICIENT TESTED FROM -170C to +110C. THE ANTENNA EASILY SURVIVED THE THERMAL CYCLING. # Subarray and Radiation test (TID and iESD): - Accelerated test (i.e. 90 days in 8hours) was performed in the Dynamitron at JPL at -170C on the 8x8 patch array for TID (3Mrad with RDF = 2) and iESD. - The iESD environment was defined for the last 90days. The average charging rate for the total 90.5 days is **3.82 pA/cm³** (with RDF = 2). - No harmful discharges were measured or defects observed. - S_{11} was measured before after radiation to assess whether there are any damage caused by potential discharges. | | Directivity (dBi) | | Gain (dBic) | | Axial Ratio (dB) | | | |---|-------------------|-------|-------------|-------|------------------|-------|-------| | F | requency
(GHz) | Calc. | Meas. | Calc. | Meas. | Calc. | Meas. | | | 7.1675 | 24.9 | 24.9 | 24.5 | 24.1±0.4 | 0.3 | 0.3 | | | 8.425 | 26.0 | 26.0 | 25.6 | 25.3±0.4 | 2.7 | 2.2 | 8×8 PATCH ARRAY HAS REACHED TRL 4 AND PASSED ALL CRITICAL TESTS TO SURVIVE AND OPERATE ON EUROPA #### 8 x 8 Patch Element Antenna TRL 1 TRL 4 ## THE EUROPA ANTENNA EXEEDS THE PERFORMANCE OF ANY ANTENNA FLOWN BEFORE BY NASA | | Aperture
Efficiency (%) | Gain
(dBic) | Area
(cm²) | HPBW
(degree) | Mass
(kg) | |-----------|----------------------------|----------------|-------------------------|------------------|--------------| | RLSA | 37 / 18 | 25.3 / 23.5 | 1256.6
40cm diameter | 6.0 / 5.1 | 1.24 | | MSL | 49 / 44 | 22.9 / 23.8 | 551.2 | 10.0 / 8.4 | 1.4 | | MER | 25 / 49 | 20.5 / 24.8 | 615.8 | 10.0 / 8.4 | 1.1 | | This work | 84/ 80 | 24.1 / 25.3 | 428.5
20.7cm×20.7cm | 10.4 / 8.7 | 0.5 | MSL **SMALLER** **MORE EFFICIENT** **RELAXES POINTING** **HIGHER POWER** 16×16 PATCH ARRAY PERFORMANCE SUCCESFULLY TESTED FROM -170C to +110C # **Front View** 32x32 Patch Elements on Front Plate. Linear array 25.4mm spacing, both directions. # **Back View** 4x4 Guides/PWB. Linear array 206.24mm spacing, both directions. # **Back View** Transitions and waveguide connect all sets of Guides/PWB f = 8.425GHz RHCP (calc.) Showing the second of seco Predicted gain = 36.0dBic Predicted gain = 37.5dBic #### 32 x 32 Patch Element Antenna DTE COMMUNICATION CAN NOW BE DONE FROM LARGE DISTANCES AND IN HOSTILE ENVIRONMENTS. MORE MISSIONS WILL USE DTE ONLY COMMUNICATION LINKS.